GCE

Further Mathematics A

Y543/01: Mechanics

Advanced GCE

Mark Scheme for Autumn 2021

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.
© OCR 2021

Annotations and abbreviations

Annotation in RM assessor	Meaning
\checkmark and \boldsymbol{x}	
BOD	Benefit of doubt
FT	Follow through
ISW	Ignore subsequent working
M0, M1	Method mark awarded 0, 1
A0, A1	Accuracy mark awarded 0, 1
B0, B1	Independent mark awarded 0, 1
SC	Special case
\wedge	Omission sign
MR	Misread
BP	Blank Page
Seen	
Highlighting	
	Meaning
Other abbreviations in mark scheme	
dep*	Mark dependent on a previous mark, indicated by *. The * may be omitted if only one previous M mark
cao	Correct answer only
oe	Or equivalent
rot	Rounded or truncated
soi	Seen or implied
www	Without wrong working
AG	Answer given
awrt	Anything which rounds to
BC	By Calculator
DR	This question included the instruction: In this question you must show detailed reasoning.

Question		Answer	Marks	AO	Guidance	
2	(a)	$\mathbf{I}=m \mathbf{v}-m \mathbf{u}=2(-3 \mathbf{i}+\mathbf{j}-(5 \mathbf{i}+16 \mathbf{j}))$	M1	1.1	Correct use of formula (award if $m \mathbf{u}-m \mathbf{v}$) Allow $16 \mathbf{i}+30 \mathbf{j}$	or using the cosine rule on vectors $\mathbf{u}, \mathbf{v}, \mathbf{I}$ to reach $\|\mathrm{I}\|=34$
		$=2(-8 \mathbf{i}-15 \mathbf{j})$	A1	1.1		
		$I=2 \sqrt{(-8)^{2}+(-15)^{2}}$	M1	1.1	or $\sqrt{(-16)^{2}+(-30)^{2}}$ oe	
		$=2 \sqrt{289}=34$	A1	1.1		
		$\cos \theta=\frac{\mathbf{I} . \mathbf{i}}{\|\mathbf{I}\|\|\mathbf{i}\|}=\frac{-16 \times 1}{34 \times 1}$	M1	1.1	Attempting to use the dot product of \mathbf{I} and \mathbf{i} to find the required angle	or use of ordinary trigonometry eg $\tan \theta=\frac{-30}{-16}$
		$\theta=\cos ^{-1} \frac{-8}{17}=118.1^{\circ} \text { or } 2.06 \mathrm{rad}$	A1	1.1		
			[6]			
2	(b)	$\text { Init } \mathrm{KE}=\frac{1}{2} \times 2 \times\left(5^{2}+16^{2}\right)$	M1	1.1	281 J	
		$\text { Final KE }=\frac{1}{2} \times 2 \times\left((-3)^{2}+1^{2}\right)$	M1	1.1	10 J	
		Loss $=281-10=271 \mathrm{~J}$	$\begin{aligned} & \text { A1 } \\ & \text { [3] } \\ & \hline \end{aligned}$	1.1		

Question		Answer	Marks	AO	Guidance	
3	(a)	$\begin{aligned} & {[F]=\mathrm{MLT}^{-2}} \\ & {\left[m v \frac{\mathrm{~d} v}{\mathrm{~d} x}\right]=\frac{[m][v][v]}{[x]}=\frac{\mathrm{ML}^{2} \mathrm{~T}^{-2}}{\mathrm{~L}}=\mathrm{MLT}^{-2}} \end{aligned}$	B1 B1 [2]	$\begin{aligned} & \hline 1.1 \\ & 2.1 \end{aligned}$	Correctly finding the dimensions of both sides is sufficient for B1B1; an explicit conclusion is not necessary.	
3	(b)	Only quantities with the same dimensions can be added (or subtracted) [so $\left[a^{2}\right]=\left[x^{2}\right]$ which means that $[a]=[x]]$	B1 [1]	2.4		
3	(c)	$\begin{aligned} & {[k] \mathrm{M}^{-\frac{1}{2}}\left(\mathrm{~L}^{2}\right)^{\frac{1}{2}}=\mathrm{LT}^{-1}} \\ & {[k]=\mathrm{M}^{\frac{1}{2}} \mathrm{~T}^{-1}} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	$\begin{aligned} & \hline 2.2 \mathrm{a} \\ & 1.1 \end{aligned}$	Use of formula for v to derive dimensional equation for [k]	
		Alternative solution $v=k m^{-\frac{1}{2}} \sqrt{a^{2}-x^{2}} \Rightarrow k=\frac{v m^{\frac{1}{2}}}{\sqrt{a^{2}-x^{2}}} \quad$ so the units of k are $\mathrm{kg}^{\frac{1}{2}} \mathrm{~s}^{-1}$ $[k]=M^{\frac{1}{2}} T^{-1}$	M1 A1		Use of formula for v to derive units of k.	
			[2]			
3	(d)	$\begin{aligned} & \frac{\mathrm{d} v}{\mathrm{~d} x}=k m^{-\frac{1}{2}}(-2 x) \frac{1}{2}\left(a^{2}-x^{2}\right)^{-\frac{1}{2}} \\ & \therefore F=m v \frac{\mathrm{~d} v}{\mathrm{~d} x} \\ & =m \times k m^{-\frac{1}{2}}\left(a^{2}-x^{2}\right)^{\frac{1}{2}} k m^{-\frac{1}{2}}(-2 x) \frac{1}{2}\left(a^{2}-x^{2}\right)^{-\frac{1}{2}} \\ & \therefore F=-k^{2} x \end{aligned}$	M1 M1 A1 [3]	1.1 1.1 1.1	Use of chain rule to differentiate v wrt x Use of formula for F with m, v and their $\frac{\mathrm{d} v}{\mathrm{~d} x}$ substituted in.	$\frac{\mathrm{d} v}{\mathrm{~d} x}=-k m^{-\frac{1}{2}} x\left(a^{2}-x^{2}\right)^{-\frac{1}{2}}$

Question		Answer	Marks	AO	Guidance	
4	(a)	$\begin{aligned} & \mathrm{KE} \text { of } P=\frac{1}{2} m v^{2} \\ & \downarrow C \sin \theta=m g \\ & \leftrightarrow C \cos \theta=m a \\ & \frac{\cos \theta}{\sin \theta}=\frac{a}{g}=\frac{v^{2}}{r g} \end{aligned}$ PE of P (exceeds that of Q by) $m g h=m g \frac{r}{\tan \theta}=m g \frac{r \cos \theta}{\sin \theta}=m g \frac{v^{2}}{g}=m v^{2}$ soi So total ME of P exceeds that of Q by $=m v^{2}+\frac{1}{2} m v^{2}=\frac{3}{2} m v^{2} \mathrm{~J}$	B1	1.2		SSU - change C to R if a better reflection of candidate solutions
			M1	3.3	Balancing forces in the vertical. C must be resolved	In this solution, C is the normal contact force between P and the cone and θ is the semi-vertical angle of the cone
			M1	3.3	NII in the horizontal using a resolved component of C	
			M1	3.4	Eliminating C (and m) between the two equations and using a correct form for a	May see $v^{2}=g h$ here and used later
			M1	3.4	Using the relationship to find the (excess) PE of P in terms of m and v (and possibly g) only	h is the vertical height of P above Q
			A1	2.2a	AG. Or total ME of $Q=0$ but some justification of excess for PE at least must be seen in the solution	Use R instead of C?
			[6]			
4	(b)	One of: - We have assumed that the radius of the circle which P moves in is the same as the radius of the cone at that level $-Q$ is at V [neither of which is quite true if P and Q do not have a negligible radius]	B1	3.5b	Also accept e.g. - CofM of P lies on the edge of the cone - CofM of Q lies at V	V is the vertex of the cone
			[1]			
4	(c)	Resistance to the motion of P should be included in the model.	$\begin{aligned} & \text { B1 } \\ & {[1]} \end{aligned}$	3.5c	eg air resistance. Allow friction.	

Question		Answer	$\begin{gathered} \hline \text { Marks } \\ \hline \text { B1 } \end{gathered}$	$\begin{gathered} \hline \text { AO } \\ \hline 3.1 \mathrm{~b} \end{gathered}$	Guidance	
5	(a)	$\begin{aligned} & F \propto \frac{1}{(t+1)^{2}} \\ & \therefore F=\frac{k}{(t+1)^{2}}=m a=3 \frac{\mathrm{~d} v}{\mathrm{~d} t} \Rightarrow \frac{\mathrm{~d} v}{\mathrm{~d} t}=\frac{k}{3(t+1)^{2}} \end{aligned}$			AG	
5	(b)	$\begin{aligned} & \therefore v=\frac{k}{3} \int \frac{1}{(1+t)^{2}} \mathrm{~d} x=\frac{-k}{3(1+t)}+u \\ & t=0, v=0 \Rightarrow k=3 u \\ & t=1, v=2 \Rightarrow 2=\frac{-k}{3(1+1)}+u \\ & \Rightarrow u=4, k=12 \Rightarrow v=4-\frac{4}{1+t} \quad \text { oе } \end{aligned}$	M1 M1 M1 A1 [4]	3.1b 3.1b 3.1b 1.1	Separating variables correctly and integrating to $\frac{C}{1+t}$; award if "+ u" missing Substituting initial values to determine a relationship between k and u. Substituting $t=1$ to determine a second relationship between k and u oe. $\text { eg } v=\frac{4 t}{1+t}$	May use +c instead of u NB The units of k are Ns^{2} or kg m but these are not required.
5	(c)	$\frac{\mathrm{d} x}{\mathrm{~d} t}=4-\frac{4}{1+t} \Rightarrow x=4 t-4 \ln (1+t)+c$ $t=0, x=1 \Rightarrow c=1 \text { so } x=4 t-4 \ln (1+t)+1$	M1 A1 [2]	1.1 1.1	For integrating their ' v ' to reach an expression involving $k \ln (1+$ t) oe Can be awarded even if no " $+c$ "	
5	(d)	$\begin{aligned} & 95 \% \text { of } v_{T}=0.95 \times 4=3.8 \\ & v=3.8 \Rightarrow 3.8=4-\frac{4}{1+t} \\ & \Rightarrow 0.2=\frac{4}{1+t} \Rightarrow 1+t=20 \Rightarrow t=19 \end{aligned}$	B1 M1 A1	$\begin{gathered} 2.2 a \\ 3.1 b \\ 1.1 \end{gathered}$	Setting their v to their 3.8 in the appropriate equation	

Question		Answer	Marks	AO	Guidance	
6	(a)	$20=4 u \Rightarrow u=5$ Initial energy $=\frac{1}{2} \times 4 \times 5^{2}$ Energy at $\theta=\frac{1}{2} \times 4 \times v^{2}+4 g \times 0.8(1-\cos \theta)$ $2 v^{2}+15.68=50 \Rightarrow v^{2}=17.16$ Radial: $a_{r}=\frac{v^{2}}{0.8}=\frac{17.16}{0.8}$ Tangential: $m a_{t}=-m g \sin \frac{\pi}{3}$ $a=\sqrt{\left(-\frac{\sqrt{3} g}{2}\right)^{2}+\left(\frac{429}{20}\right)^{2}}=23.067 \ldots \text { so the }$ magnitude of the acceleration is $23.1 \mathrm{~m} \mathrm{~s}^{-2}$ (3 sf)	B1 B1 M1 A1 M1 M1 A1 [7]	$\begin{gathered} \hline 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ \hline 3.1 b \\ \hline 3.1 b \\ \hline 1.1 \end{gathered}$	$=50$ Attempt to derive total ME at general or specific angle Equating energies to derive a value for v^{2} Correct form for centripetal acceleration and use of v^{2} NII for tangential direction with weight resolved (- not necessary)	Assuming zero PE level at initial level of P $v=4.142 \ldots$ $a_{r}=21.45$ $a_{t}=-\frac{\sqrt{3} g}{2}=-8.4870 \ldots$
6	(b)	Radial: $T-4 g \cos \theta=\frac{4 v^{2}}{0.8}$ $\begin{aligned} & v^{2}=5^{2}-2 g \times 0.8(1-\cos \theta) \\ & -7.84 \cos \theta=9.32+15.68 \cos \theta \\ & \therefore \cos \theta=-\frac{9.32}{23.52} \\ & \therefore \theta=113.3^{\circ} \text { or } 1.98 \text { rads } \end{aligned}$	M1 M1 A1 [3]	$\begin{gathered} 2.1 \\ 2.1 \\ 3.2 a \end{gathered}$	NII for radial direction. T could be set to 0 . Correct form of a_{r}. v^{2} in terms of $\cos \theta$ from conservation of energy	$v^{2}=9.32+15.68 \cos \theta$

Question		Answer	Marks	AO	Guidance	
8	(a)	$\bar{x}=\frac{12 a \times M+x \times m}{M+m}=\frac{12 M a+m x}{M+m}$	B1 [1]	1.1	AG. www	
8	(b)	$\bar{y}=\frac{3 a \times M+y \times m}{M+m}=\frac{3 M a+m y}{M+m}$	$\begin{aligned} & \text { B1 } \\ & {[1]} \\ & \hline \end{aligned}$	1.1		
8	(c)	If P is at $O, \bar{x}=\frac{12 M a}{M+m}$ and $\bar{y}=\frac{3 M a}{M+m}$ $\begin{aligned} & \bar{y}<2 a \Rightarrow 3 M<2 M+2 m \Rightarrow m>\frac{1}{2} M \\ & \bar{x}<6 a \Rightarrow 12 M<6 M+6 m \Rightarrow m>M \\ & \text { Conclusion: } m>\frac{1}{2} M \end{aligned}$	B1ft M1 M1 A1 [4]	3.4 3.4 2.4	FT their expression for \bar{y} AG.	Alternative: B1 for correct expressions for \bar{x}, \bar{y} M1: forming 2 inequalities with $2 a$ and $6 a$ (must be right way around) M1: simplifying or manipulating both inequalities so that they can be combined or compared A1: fully correct and conclusion www
8	(d)	$\begin{aligned} & \bar{x}=\frac{12 M a+m \times 12 a k}{M+m} \text { used } \\ & \frac{12 M a+m \times 12 a k}{M+m}=6 a \\ & k=\frac{m-M}{2 m} \text { oe } \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3.3 \\ & 3.4 \\ & 1.1 \end{aligned}$	Their \bar{x} equated to $6 a$ $k=\frac{1}{2}\left(1-\frac{M}{m}\right)$	Ignore working with \bar{y} Ignore working with \bar{y} unless this affects final answer
8	(e)	$\begin{aligned} & m=\frac{3}{2} M \Rightarrow k_{O C}=\frac{1}{6} \\ & \bar{y}=\frac{3 M a+\frac{3}{2} M \times 6 a k}{M+\frac{3}{2} M} \end{aligned}$	B1 M1	$\begin{aligned} & \hline 3.3 \\ & 3.4 \end{aligned}$	$k_{O C}=\frac{3}{18}=0.1 \dot{6}$ Substituting $y=6 a k$ and $m=\frac{3}{2} M$ into their \bar{y}	

OCR (Oxford Cambridge and RSA Examinations)
The Triangle Building
Shaftesbury Road
Cambridge
CB2 8EA
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

